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Zirconia (ZrO2) can be forced into a cubic f luorite structure by the addit ion of more than 
7 mol % yttria (Y203). The elastic sti f fness constants of cubic zirconia single crystals 
containing 8 and 12 mol % yttria have been determined between 77 and 300 ~ K by an 
ul trasonic pulse echo technique. Elastic constants are almost temperature-independent 
and at 77 ~ K are for the 8 and 12 mol % respectively: C1, = 2.04, C,, = 0.87, C,, = 1.58; 
C,, = 2.23, C~2 = 0.973, C,, = 1.54 (units:  10 '2 dynes cm-2). Compressibi l i t ies and elastic 
compl iances are also presented. The data provide a basis for d iscussion of crystal l ine 
stabil i ty and the nature of the interatomic forces. The decreasing cubic lattice stabil i ty as 
the yttria content is reduced is demonstrated quantitatively. An ionic model closely 
characterises the binding forces. The repulsive energy is about 12% of the Madelung 
attractive energy. Debye temperatures calculated from the elastic constant data extrapolated 
to 0 ~ K are 595 and 604 ~ K for the 8 and 12 mol % respectively. 

t .  Introduction 
Zirconium oxide, ZrO2, is of great importance as 
a refractory. However, it is polymorphic [1 ]. The 
normal monoclinic modification (space group 
P21/C) [2] transforms at about 1000 ~ C into a 
tetragonal form; a considerable volume contrac- 
tion of about 9 ~ ensues: zirconia itself cannot 
be fired into a strong, stable, sintered ceramic. 
But when certain cubic oxides, including yttria 
(Y2Oz), form solid solutions with zirconia, a 
stabilised cubic structure with a fluorite type of 
lattice is assumed. Such materials can be fired; 
no transformations at elevated temperatures 
take place in the stabilised alloys. Valency 
requirements indicate that oxygen vacancies are 
now present, due to the replacement of tetraval- 
ent Zr ~+ ions by trivalent Ya+ ions; in conse- 
quence, electrical conductivity is enhanced. 
Zirconia-yttria solid solutions are of technical 
importance as refractory conductors, especially 
in connection with high temperature electrodes 
in magneto-hydrodynamic generators and for 
fuel cell applications. One unfortunate result of 
high temperature current passage through the 
stabilised zirconia is a marked tendency for 
fragmentation of both sintered, polycrystalline 
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electrodes and single crystal specimens. Studies 
of the way in which electrical currents alter the 
bulk properties of single crystals are in progress 
in an attempt to solve this problem. To back up 
this work, detailed knowledge of the mechanical 
properties and the nature of the bonding is 
required. 

The elastic constants of single crystals furnish 
basic mechanical and lattice thermodynamic 
information. The present concern is to report 
elastic constant measurements, made using the 
ultrasonic pulse-echo technique, for yttria- 
stabilised zirconia. Data are used as a basis for 
discussion of the stability of the crystals and the 
nature of the interatomic forces in them. 

2. Experimental Details 
Two compositions of the solid solutions of yttria 
with zirconia have been studied, one of 8 tool 
Y203 and the other 12 mol ~ Y20~, the former 
because it is close to the stability edge (,-~ 7 mol 

Y~O3) [3] of the cubic phase. Single crystals 
were grown by electrofusion from pure powdered 
zirconia and yttria. Samples were cut from the 
crystallised melts and oriented from back- 
reflection Laue photographs. X-ray examina- 
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tions showed high crystal perfection, there being 
no evidence for mosaic imperfections, and that 
the material was in the cubic phase. The chemical 
purity was high. Optical spectrographic analysis 
showed that the only impurities, present at trace 
level, were silicon, hafnium, magnesium and tin. 
This result was substantiated by the absence of 
observable electron spin resonance spectra 
(sought at 9 GHz and 4.2 ~ K), which also 
indicated freedom from other paramagnetic 
impurities. 

Crystals were aligned to within 1 o of the pre- 
requisite [1 10] crystallographic axis, then two 
(1 10) faces were cut by a diamond wheel and 
lapped flat and parallel to each other to better 
than 0.001 cm to avoid ultrasonic diffraction 
and phase sensitivity effects. Ultrasonic wave 
transit times along the crystal were measured to 
an accuracy of • 1 ~  by the single-ended, 
pulse-echo technique at carrier frequencies 
between 10 MHz and 50 MHz. Velocities were 
independent of frequency over this range. Ident- 
ical results, within experimental error, were ob- 
tained from different crystals of the same 
composition. Resonant, gold-plated quartz 
transducers, X-cut for longitudinal and Y-cut 
for shear waves, were used to excite the ultra- 
sound. For Y-cut transducers, the bonding 
material used (106 cs silicone fluid) was unsatis- 
factory above 200 ~ K, limiting the range of 
experiment. However, the velocities were not 
very temperature-dependent. Further experi- 
mental details may be found elsewhere [4]. 

As the strains induced by ultrasonic waves are 
only of the order of 10 -7, Hooke's law is valid 
and each stress component Tij can be considered 
as a linear homogeneous function of the strain 
components eke: 

T~j = C~5~ ek~ (i , j ,  k, l = 1, 2, 3),  (1) 

where the connecting components are the elastic 
stiffnesses or moduli C~k~. The usual matrix 
notation giving these constants as C~j is achieved 
by replacing 11 by 1, 22 by 2, 33 by 3, 23 by 4, 
13 by 5 and 12 by 6. Symmetry in cubic crystals 
reduces the 6 • 6 array for C,:jk~ in equation 1 so 
that only three independent elastic constants 
remain. 

In the present work, velocities v, of longitudi- 
nal and slow and fast shear waves propagated 
along the [1 10] direction were measured. In this 
case 

fllJ12 = p];2 long = ( C l l  _l_ C12 3 7 2C4a)/2 = C~ ; 
q along [1 10]; 
PP22 = Dv 2 shear  (1) = C 4 4 ,  q along [001]; 
pP3 2 = pP 2 shear  (2) = ( C l l  - -  C12)/2 = C'; 
q along [1 [ 0 ] ,  (2) 

where q is the polarisation vector and p is the 
sample density. All three elastic constants C11, 
C12 and C44 are obtainable from this set of 
measurements. However, the three elastic con- 
stants Cn, C4a and C' can also be used to define 
the three independent stiffnesses and have direct 
physical significance. For the [1 10] direction a 
normal stress T., as applied through the longitudi- 
nal sound wave inserted onto the (1 10) face, 
produces a strain S~ parallel to [1 10] and 
T, /S ,  is C~. For  shear waves propagating down 
and with atomic motion perpendicular to the 
[110] direction, two physical situations occur, as 
shown by equation 2; first, for atoms vibrating 
in the [001] direction, the ratio of the shear 
stress to shear strain is C44, second, for tractions 
parallel to [1 i0 ]  the ratio is (Cll -- C12)/2. 

Ultrasonic wave velocities at 77 and 196 ~ K 
are given in table I, together with sample 
densities (measured by Archimedes' principle) 
and lattice spacings (obtained from Debye- 
Scherrer powder photographs taken with Cu K~ 
radiation applying the Nelson-Riley extra- 
polation formula). 

3. Results and Discussion 
The linear combinations of the elastic constants 
C~, C~4 and C' derived from the velocity data, 
using equation 2, are given as a function of 
temperature in fig. 1. Calculated values of Cn, 
CI~ and C~4 at 77 and 196 ~ K are presented in 
table II. Another simple deformation is a pure 
volume dilation without shear, expressed as the 
bulk modulus K, the measure of stiffness to 
volume dilation. 

K =  -- v d P =  Cl1-t- 2C1~. 
dV 3 (3) 

The bulk modulus data are also given in table II. 
In addition to the stiffuesses Ci~k~, tabulations 
usually include the elastic compliances defined 
by 

eij = Sij~ Tij .  (4) 

Sijkz is the reciprocal tensor of Ci~'kz. The 
compliances of cubic crystals are given by 
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T A B L E  I Velocit ies of ultrasonic waves propagating down the [110] axis in zirconia-yttria solid solutions, the meas- 
ured density and the lattice spacing 

Ultrasonic wave velocity Density at room Lattice spacing at room 
cm/sec • 10 ~ temperature temperature 

Longitudinal Shear gm cm -a 
Fast Slow 

(ZrO~)o.,~ (Y~O~)o.os 
77~ 7.09 5.12 3.11 

196~ 7.09 5.12 3.11 
(ZrO2)o.ss (Y~Oa)o.a~ 

77~ 7.30 5.78 3.26 
196~ 7.30 5.78 3.24 

6.036-t-0.001 5.1276:t=0.0001 

5.894 :k 0.001 5.1401 :k 0.0001 
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Figure I The temperature-dependence of the measured 
linear combinat ions of the elastic constants of (ZrO2)o.88 
(Y2Oa)o,12 (open circles) and (ZrO2)o.~2 (Y203)o.os (closed 
circles). The units are 1012 dynes cm 2. 

- (cl, + G~) 
S l l  = ( C ] l  Au 2C12)(C12 - -  Cll) ' 

G. 
3 1 2  = ( C l l  -~- 2 C 1 2 ) ( C 1 2  - -  C l l  ) ' 

1 
Szl4 = (5) 

Calculated values of  Sij  are collected in table I1. 
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The three independent compliances for cubic 
crystals can also be defined as the two reciprocal 
shear moduli $4~ and 2 ( S n -  $1~) and the 
compressibility 3(Sll + 2S~2). 

The elastic stiffnesses and compliances for the 
two compositions of  crystals are close: the 
mechanical properties are similar. Some insight 
can be gained into the degree of crystal stability: 
for a crystal lattice to be stable, certain relation- 
ships must hold between the elastic constants so 
that the energy density is positive [5]. Both 
1 ( C l l  - -  C 1 2  ) and ( C l l  - ] -  2C12)/3 must be posi- 
tive in cubic crystals. The greatest difference 
( ~ 8 ~ )  between the elastic constants of  
(ZrO2)o.ss (Y20~)o.~2 and (ZrO2)o.92 (Y20~)o.os, 
lies in (Cl l  - -  C1~)/2. And this is significant�9 A 
negative value for ((711 - -  C~2)/2 would lead to a 
spontaneous collapse of the lattice; the composi- 
tion at which ( C l l -  C12)/2 becomes zero, 
represents the absolute stability limit of  the 
fluorite phase. The decrease of 8 ~  in 
( C I 1  - -  C~2)/2 found between (ZrO2)0.as (Y203)0.12 
and (ZrOz)0.9~ (Y2Oa)0.0s indicates a reduction in 
lattice stability. 

The absence of a substantial temperature- 
dependence of ( C n  --  C~2)/2 for these crystals is 
consistent with the vertical phase boundary line 
at about 7 mol ~ Y2Oa in ZrO2 in the phase 
diagram [3]: if the composition at which the 
phase change occurs did vary with temperature 
then ( C n -  C~2)/2 in compositions near the 
limit would be temperature-sensitive. A further 
criterion for stability is that Cla 2 - -  C~2 ~ > 0 .  
The parameter (C~12 --  C122) decreases by 18 
from the 12 mol ~ to the 8 mol ~ solution, 
again confirming the decreasing lattice stability 
as the yttria content is reduced. 

For an isotropic substance (Cn --  C~2) equals 
2C44. The extent to which this relation holds 
good is an indication of the isotropy of a cubic 
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T A B L E  I I The elastic stiffness and compl iance constants of zirconia-yttr ia solid solut ions 

Elastic constants (ZrQ)o.a~ (Y2Os)o.os (ZrO~)o.s8 (Y2Oa)o-~2 
10 ~2 dynes cm -~ 77 ~ K 196 ~ K 77 ~ K 196 ~ K 

(Cll -- C1~ + 2Ca~)/2 3.03 3.03 3.14 3.14 
( C~I - C~)/2 0.585 0.585 0.627 0.617 
C~4 1.58 1.58 1.54 1.54 
Ca~ 2.04 2.04 2.23 2.22 
Ca~ 0.870 0.870 0.973 0.983 
(Cll -]- 2C1~ ) 

3 bulk modulus  1.26 1.26 1.39 1.40 

2C4~ 
(Cn  -- C~) anisotropy ratio 2.70 2.70 2.46 2.50 

C12 
C4--~ Cauchy relation 0.55 0.55 0.63 0.64 

Cn  ~ -- C~2 ~ 3.305 3.305 4.032 4.052 

Elastic compliances 
10-1e cm 2 dyne -1 
Sal 0.658 0.658 0.610 0.619 
Sh~ -- 0.197 -- 0.197 -- 0.185 -- 0.190 
$4~ 0.633 0.633 0.649 0.649 

crystal. Values of 2C4~/(C1~ -- C12), quoted in 
table II, for the alloys, are not close to unity: a 
shear on a {100} cube face is resisted rather more 
than one on a diagonal {1 10} face. If the inter- 
atomic lattice forces are central, so that every 
atom is sited at an inversion point, the Cauchy 
relation (C~z = C4~) should hold. In the present 
case the experimental value of C1~/C44 is ~ 0.6. 
This is close to that found in MgO but different 
from the ratios found in the alkali halides in 
which the Cauchy relations hold quite well. In an 
alloy consisting of three atomic species and 
containing vacancies, the central forces model 
will not hold rigidly. 

Knowledge of the bulk modulus can be used to 
develop an understanding of the type of binding 
between the atoms in the crystals. One approach 
is to assume ionic binding in spite of the non- 
central forces. Then we can write for the 
potential energy per unit cell 

-- oz2e2FA B 
�9 o - -  q -  , ( 6 )  

r 

where ~ is the largest common factor in the 
valencies of the ions (2 in the present case), /x is 
the number of molecules per unit cell, A is the 
Madelung constant and n is the repulsive 
exponent, which can be determined from the 
bulk modulus. The constant B in the repulsive 
term can be found in the usual way from the 
condition that drb/dr = 0, when r takes the 
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equilibrium distance R0 �9 Then 

--c~2e2FA(l 1 ) = q5o(1) + q5o(,~). (7) 
~ o  - -  R e  - -  n 

Now writing the lattice energy per mole Uo as 
(-- N~o/>) we have 

~2e2NA(I 1 )  
V o  - R o  - n " ( 8 )  

The effect of the presence of oxygen vacancies in 
the crystals can be taken into account to a first 
approximation by choosing for R 0 the cube root  
30 of the molecular volume. The corresponding 
Madelung constant is then given by 

A Ae0 
Ro = 3--~" (9) 

Then substituting 9 into 8 and introducing 
numerical values for Avogadro's number N and 
the electronic charge e, we have 

U0 = 280.6 ~ (p/M) ljz A~o ( i  -- ! ) ,  (10) 

where M is the gram molecular weight. A ~0 for the 
fluorite lattice is 7.33058 [6, 7]. Calculated values 
for the Madelung energy, 280.6 ~ (p/M) 1'3 Aao, 
are collected in table III. The attractive energy 
in the solid solutions is rather greater than that 
of pure zirconia. 

1 1 0 9  
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T A B L E III Thermodynamic parameters of the zirconia-yttria solid solutions 

p Madelung Repulsive 
attractive energy 
energy UM U. 

Total binding Debye 
energy temperature 
U o =  UM-~ Un 0 0 

ZrO 2 0.0430 -- 2889 - -  
(ZrO2)o.s8 (Y20~)o.1~ 0.0435 -- 2892 § 321 
(ZrO2)o.9~ (Y~O3)0.os 0.0459 -- 2945 + 348 
Energy units : kcal/mol 

-- 2571 604 ~ K 
-- 2597 595 ~ K 

The re la t ionship  between the bu lk  modulus  

l d P  O~U [ ~ 2 U \ ( d x )  2 
K :  - -  V d - - V :  - -  VOV2 V~'-Ofix~) -d--V 

(]l) 

and the repulsive exponent  can be ob ta ined  by  
differentiat ing the poten t ia l  energy expression 
twice wi th  respect  to in ternuclear  dis tance and  
subst i tut ing into  11. F o r  the fluorite lat t ice the 
nearest  ne ighbour  dis tance r0 is ,/(3 a0/4) and  the 
vo lume V of  a g ram molecule  is 16/(3 ~/3) Nre 8 . 
The exponent  n can be shown to be 

9 304 K 9 ao ~ K 
n = 1 + o~2e~A~o = 1 + c~2e2A-----~, ~ (12) 

Tak ing  the measured  lat t ice spacing (see table  I), 
the app rop r i a t e  M a d e l u n g  cons tant  (A,  0 = 11.63 
for  the f luori te lattice) [6, 7], and  the measured  
bu lk  modulus ,  n is ca lcula ted as 9.1 for  (ZrOz)0.ss 
(Y9,O3)0.12 and  8.5 for (ZrO2)o.gz (Y203)o,oa. F o r  
m a n y  ionic crystals ,  n is approx ima te ly  equal  to 
9: the b ind ing  in these solid solut ions appears  to 
be largely ionic. By put t ing  the values of  n into 
equa t ion  10, the to ta l  lat t ice energy per  mole  
can be ca lcula ted  (see table  III) .  Repuls ive 
energies are abou t  12 ~ of  the a t t ract ive  energies. 
F r o m  the values of  Uo, m a n y  the rmochemica l  
pa ramete r s  become ava i l ab le .  

One useful parameter ,  the Debye  t empera tu re  
00, m a y  be ca lcula ted  readi ly  f rom elastic 
cons tan t  data.  Here  the me thod  of  de Launay ,  
based  on the Born-yon  K a r m a n  model ,  has been 
used [8]. 
Then 

h (  9N )113(C44)112 [ 9 ]113 

0o = ~ G-f~ - 7 ,  18 + ~ f  ' 

where values o f f  are  t abu la ted  in [6] in terms 

o f  the parameters  

C11 - -  C44 C12 - -  C44 
s - -  - -  and  t 

C12 + C44 C44 

Elastic cons tan t  da t a  have been ex t rapola ted  to 
0 ~ K.  The values of  00 derived in this way are 
604 ~ K for (ZrO2)0.ss (Y~Oa)0.1= and  595 ~ K for 
(ZrO2)e.92 (Y20~)o.oa. Knowledge  o f  the Debye  
t empera tu re  is impor t an t  in the in te rpre ta t ion  o f  
spin-lat t ice re laxat ion  behav iour  [9] par t icu la r ly  
in assessing whether  direct  or  R a m a n  processes 
should  domina te  the re laxat ion  at  a given 
t empera tu re  and  in de termining  the influence o f  
defect sites�9 In  the studies of  the effects o f  current  
passage iny t t r i a - s tab i l i sed  zirconia  single crystals, 
it  has been shown that ,  in electrically reduced 
samples,  e lectron spin resonance spectra  are 
observable  at  17 and  4�9 ~ K (9 OHz) ;  these 
results will be discussed more  fully elsewhere�9 
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